The Dark Art of Cement Bond Log

M.Yakimov 28-Sep-2012

Overview

- Purposes of Cement Bond Logging
- Typical Cementing Problems
- Petrophysical Methods for Cement Bond Evaluation
- Acoustic Methods in Detail
- Log Quality Control
- Basic Cement Bond Log Interpretation
- Examples

Purposes Of Cement Bond Logging

Good cementing is needed for:

- Hydraulic isolation of the casing annulus and permeable intervals
- Casing mechanical support
- Perforation holes' stability

Little test

Do you have hydraulic isolation at the proposed perforation interval:

- ICV¹ = 15m³, pumped 20m³ plus displacement volume, no returns at surface
- ICV = 15m³, pumped 20m³, 3m³ of returns, but the level has dropped as soon as the pump stopped
- ICV = 15m³, pumped 20m³, 3m³ of returns, 3 days later –still solid cement cake at surface
- ¹ ICV Integrated Cement Volume

Little test – answers...

Hydraulic isolation:

• ICV = 15m³, pumped 20m³ plus displacement volume, no returns at surface

Inconclusive (most likely, no)

• ICV = 15m³, pumped 20m³, 3m³ of returns, but the level has dropped as soon as the pump stopped

Inconclusive (most likely, no)

• ICV = 15m³, pumped 20m³, 3m³ of returns, 3 days later –still solid cement cake at surface

Inconclusive (most likely, yes...

but would you bet your life on it?)

Cement Bond Logging

- Continuous downhole measurement over the entire cementing intervals
- Good quantitative measurement of cement quality and placement
- Allows to plan remediation work
- May provide clues for cementing programs' improvements

- Solid conclusive answers if done properly
- Inconclusive or just wrong if any shortcuts are taken

Typical Cementing Problems

1. Incorrect volumes

- Too little / too much pre-wash, slurry, displacement
- Unexpected fluid losses (including the losses increase after the casing run)

What is wrong here?

Integrated Hole/Cement Volume Summary

Hole Volume = 5.29 M3 Cement Volume = 5.29 M3 (assuming 0.00 IN casing O.D.) Computed from 410.3 M to 265.9 M using data channel(s) BS

- ⊢ Integrated Hole Volume Major Pip Every 100 F3
 - Integrated Cement Volume Minor Pip Every 10 F3
 - Integrated Cement Volume Major Pip Every 100 F3
- Time Mark Every 60 S

2. Cement composition

- Too little / too much retardants
- Density
- Viscosity
- pH
- Water salinity
- Reactions with formation minerals (esp. clay minerals, limestone, dolomite)
- Reactions with mud components (esp. water-polymer mud systems)

3. Pumping procedure

- Flow rate is too slow / too fast
- Stop-overs or pump break-downs
- Stages and valves...

Effects (in order of significance):

- No cement behind casing
- Channeling
- Poor quality cement behind casing
- Poor formation bond
- Micro-annulus
- Cement mechanical degradation
- Cement chemical degradation

Volume effect:

- No cement behind casing:
 - Not enough slurry
 - Too much displacement fluid pumped
 - Not enough displacement fluid pumped (so you probably have some bigger problem here!)
- Cement / fluid return at surface is not a guarantee of proper cement placement

Placement effects:

- Channeling
 - Physical effects (e.g. flow rate)
 - Chemical effects (e.g. clay minerals)
 - Insufficient pre-wash
- Poor formation bond
 - Mostly chemical effects (e.g. clay minerals)
 - Insufficient pre-wash
- Micro-annulus
 - "Aggressive" cementing programmes
 - Low casing grades

Material effects:

- Poor quality cement behind casing
 - Chemical effects (e.g. clay minerals, water-based polymers)
 - Insufficient pre-wash
- Cement mechanical degradation
 - Vibration
 - Perforation
- Cement chemical degradation
 - Very unusual for modern slurries

Petrophysical Methods for Cement Bond Evaluation

Non-petrophysical methods

- Surface cement samples
- Pressure / rate / density record
- Returns observation
- Pressure tests
- LOT / FIT

• "Nullius in verba!" (Horace)

Petrophysical methods

- Temperature Log
- Neutron Log
- Acoustic Logs
 - Sonic Log (CBL / VD or Sector CBL)
 - Ultrasonic Log
 - Combination Log

Acoustic Logs

• Tool response is related to Acoustic Impedance:

$Z = \rho / S * 304.6$	in MRay, 1Ray=kg/s/m ²
S – slowness, µs/ft	ρ – density, SG

Steel (bulk):	S=51.4,	ρ=7.80	Z=46.2
Steel (pipe):	S=57.3,	ρ=7.80	Z=41.5
Cement:	S=58-72,	ρ=1.76-2.72	Z=7.46-14.3
Water/Brine:	S=189,	ρ≈1	Z=1.61
Mud:	S≈200,	ρ=1.03-1.8	Z=1.45-2.70
Formation:	S=40-400,	ρ=1.5-2.7	Z=1.2-21

Acoustic Logs (2)

 Reflection coefficient from Acoustic Impedance:

 $C_{R} = (Z_{2}-Z_{1}) / (Z_{1}+Z_{2})$

 Transmission coefficient from Acoustic Impedance:

$$C_{T} = 2^{*}Z_{1} / (Z_{1}+Z_{2})$$

• Note:

 $C_{R} + C_{T} = 1$

Acoustic Logs (3)

- Due to the great contrast between fluids, steel and cement, sound reflections provide excellent way of determining the cement presence and quality
- De-facto industry standard
- Regulatory requirement in many countries

Acoustic Methods in Detail

Acoustic Log (CBL-VDL)

- Cement Bond Log (CBL) 3 ft between the transmitter and the receiver
- Visual Density Log (VDL) 5 ft between the transmitter and the receiver
- DSLT Schlumberger Ltd.

Acoustic Log (Sector CBL)

- Cement Bond Log (CBL) 3 ft between the transmitter and the receiver
- Visual Density Log (VDL) 5 ft between the transmitter and the receiver
- 8 "sectoral" piezoelectric receivers, providing rough cement image at 45^o steps
- SBT Weatherford International

Sound propagation in casing

Waveforms at receiver

Cement dissipates tube wave II

CBL Log Components

CBL Log Components (2)

- VDL "wavetrain" provides means for qualitative interpretation and log quality control
- CBL amplitude provides means for quantitative interpretation of content behind casing – the lower the CBL, the better the cement.
- Transit time is the most important quality indicator

CBL Interpretation Charts (Cem-1, GN 8-7, etc)

CBL Uncertainty

- CBL is an "integrating" tool
- Same response for:
 - 100% cemented pipe with low compressive strength cement
 OR
 - Partially cemented pipe with high compressive strength cement (e.g. channels)

OR

- Micro-annulus

Sector CBL

Ultrasonic tools

- Resolve CBL uncertainty by metering 360° surrounding
- Schlumberger (USIT) or Weatherford URS – one rotating transducer
- Isolation Behind Casing Tool (IBC) – three rotating transducers

Ultrasonic tool principle

Ultrasonic tool principle (2)

Arrival Time ~ Casing Radius Attenuation Decrement depends on CR on both sides of t, Arrival Amplitude ~ Mud Properties the casing W Signal Frequency ~ 1/Casing Thickness

Ultrasonic Presentation (Cement)

FIN	60017 URS3b FINISH DEPTH: 46.6 Meters DIRECTION: UP DATE: 03/18/2012 TIME: 16:17 MODE: ORIGINAL																		
			_11	R1 3'	т	r								Max	Imp	edance			
			600	us		200		I			I			0.00	00	10.000			
Colla	r Loo	cator	Mud	Slow	/nes	ss		3'	Amp A	\mplitu				Avg	Imp	edance	Impd	Мар	Scale
- 7000	mν	700	120.0	Ð	22	0.0		0	 mv	20				0.00	00	10.000	0.000	Ð	6.000
Gamma Ray Eccenterin		g	Tension	3'	Ampli	Ltude	T1R4	5' X	Y Sig	Min	Imp	edance	I	mpd I	Мар				
0	API	70	0.00	in	1	. 00	0 3000	0	mv	100	200	us	1200	0.00)0	10.000			
\vdash		_		_	_	_	50	⊢	+					╉─┤				_	
\vdash																		_	
l																			

Ultrasonic Presentation (C&C)

Ultrasonic limitations

- Have difficulty detecting formation bond
- May give false readings in high-viscosity mud
- Cannot distinguish between Micro-Annulus and absent cement
- Ideally, should always run in combination with CBL/VDL
- IBC can be run without CBL/VDL, but the service does not provide the standard 3' and 5' logs
 - Combine with CBL/VDL if possible

Combination logs

"Nolite id cogere, cape malleum majorem" -If it does not want to go, don't force it. Just take bigger hammer.

Courtesy Schlumberger Ltd.

Log Quality Control

Tool positioning: centering

- Both Ultrasonic and CBL/VDL have to be perfectly centered (typically anything above 0.2" is unacceptable)
- Off-center effects:
 - CBL shows lower amplitudes (e.g. "better cement")
 - VDL arrivals "smeared" (e.g. "bad cement"?)
 - Ultrasonic shows "channels" in direction perpendicular to offset and casing thickness increase in the same direction
- For both type of tools, eccentering is easy to see

Tool positioning: tilt

- Both Ultrasonic and CBL/VDL should not run "tilted" (that may happen due to centraliser failure)
- Tilt effects:
 - CBL shows lower amplitudes (e.g. "better cement")
 - VDL usually unaffected
 - Ultrasonic shows "channels" in direction of tilt and casing thickness increase in the same direction
- For Ultrasonic tuul, tilt, especially sporadic tilt due to jerky cable motion, may pass undetected, resulting in wrong interpretation

Transit Time should be right!

Smud Sin @ = Scsg Sin 90° Sin Q = Scsg / Smud $TT = 2TT_{mud} + TT_{csg}$ $TT = 2 \cdot \frac{d}{2} \frac{1}{\cos \theta} S_{mud} + (L - 2\frac{d}{2} \cdot tg \theta) S_{csg}$ d - casing inner diameter

L-sonde spacing

$$Cos \Theta = \sqrt{1 - \frac{S_{csg}^2}{S_{mud}^2}} = \frac{\sqrt{S_{mud}^2 - S_{csg}^2}}{S_{mud}}$$

$$TT = \frac{d \cdot S_{mud}^2}{\sqrt{S_{mud}^2 - S_{csg}^2}} + LS_{csg} - \frac{dS_{csg}}{\sqrt{S_{mud}^2 - S_{csg}^2}} = \frac{dS_{csg}}{\sqrt{S_{mud}^2 - S_{csg}^2}} = LS_{csg} + d\sqrt{S_{mud}^2 - S_{csg}^2}$$

TT should not change fast

TT should not change fast (2)

- TT should be within ±0.5 µs on each of the casing segments
- Changes at the casing collars are expected
- Minor changes on casing jewellery are possible
- Gradual change from TD to surface is OK (S_{mud} changes with temperature)
- Fast-changing TT indicates poor tool centering or sporadic tilt

CBL must be calibrated!

- If CBL reads above Free Pipe amplitude or below 100% amplitude – suspect poor tool calibration
- Fluid Compensation Factor (FCF) should be used with caution

Basic Cement Bond Log Interpretation

1. Calculate Min and Max amplitudes

- Casing Thickness
- Free Pipe CS = 0 MPa
- Fully cemented pipe:
 - Normal 10 MPa
 - Foamed 6 MPa
 - OR: use lab data if available

3. Determine Formation Arrivals

- Prominent formation arrivals indicate channeling as opposed to weak cement or micro-annulus
- Decide to follow path 4a or 4b

4a. Calculate C.S. (from Cem-1)

Weak cement or Micro-annulus case

4b. Calculate % of coverage

Cement coverage = $(A_{cbl}-A_{100\%})/(A_{free}-A_{100\%})$

Channeling case

5. Micro-annulus or Weak Cement?

- Micro-annulus is caused by two factors:
 - Aggressive cementing program (low retardants, high pumping rates) AND
 - Low-grade casing
- CBL/VDL alone cannot distinguish between micro-annulus or low compressive strength cement
- Micro-annulus can be positively resolved by SCBL-URS combo or by IBC

Cement Bond Interpretation (Recap)

Step 1: Determine CBL amplitude limits
Step 2: Perform CBL Triage
Step 3: Check formation arrivals
Step 4a: Calculate C.S. OR Step 4b: Calculate Coverage
Step 5: Distinguish between micro-annulus or low weak cement (e.g. by sector bond)

Locate zones of interest and decide on hydraulic isolation

References

- Shell Production Handbook v3, The Hague, 1991
- P. Theys, Log data acquisition and quality control, 1999
- Schlumberger Log Interpretation charts, 2004
- Weatherford Log Interpretation charts, 2009

